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Abstract
The animations displayed below are animated samples from correlated

Gaussian beliefs, following closed trajectories along equipotential lines of
the probability distribution. They offer a more expressive view of the
structure of samples from Gaussian processes than static samples. This
document explains how to generate them, using Matlab, tikz, and LATEX,
in that order. If you do not see two animations with wobbly lines on the
first proper page of this document, try opening it with Adobe Reader.



1 Introduction

There are two main reasons to use animations in slide presentations. The first
one is that the human mind likes seeing animations in presentations. They
attract our attention. The second one is that time offers a third dimension that
can help display information beyond the two spatial dimensions of the projection
screen. This document explains how to make smooth, looping animations of
Gaussian distributions. The procedure is mathematically well founded, and can
be applied to every set of jointly Gaussian variables, including function values
drawn from Gaussian process priors, matrix or vector-valued operators drawn
from multi-output Gaussian processes, and even structured outputs (though I
have not yet tried this).
This text is a short technical note on how to generate these kind of animations.
Their main value is educational. This technical document is intended to inform
the community about relevant implementation details for this relatively simple
idea, and to provide a citeable document.

1.1 Prior work

While preparing this document, it came to my attention that a 1991 paper by
John Skilling1 mentions a related idea, which gives a continuously changing
animated plot that is perhaps better suited for the analysis of Gaussian models
on a computer display (as opposed to the presentation of a model on a projected
slide).

1.2 How to cite this document

If you are using the code in this document to construct animated slides, I would
be grateful for a citation of

• Philipp Hennig
Animating Samples from Gaussian Distributions.
Technical Report No. 8 of the Max Planck Institute for Intelligent Systems.
September 2013

BibTex:

@TechReport{hennig-tr-is-8,
author = {Philipp Hennig},
title = {Animating Samples from Gaussian Distributions},
institution = {Max Planck Institute for Intelligent Systems},
year = 2013,
type = {Technical Report},
number = 8,
address = {Spemannstra{\ss}e, 72076 T{\"u}bingen, Germany},
month = {September}

}

1J. Skilling. Bayesian solution of ordinary differential equations. in C.R. Smith et al (eds.),
Maximum Entropy and Bayesian Methods, Seattle, 1991.
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1.2.1 License

The code quoted in this document is provided by the author “as is” without
any expressed or implied warranties, and without any copyright, as far as the
code written by the author is concerned (each of the used packages has their
own copyright, see the corresponding webpages of the individual projects for
more information). So everyone is free to change and adapt the code as they see
fit. I would be grateful if you could mention the name of the original author in
changed code, but there is no legal requirement to do so. If you are using the
ideas described herein to generate animations in your presentation, I would be
grateful if you could cite this document in the way mentioned above.

2 Mathematical Background

Assume we want to display samples from a joint Gaussian distribution N (x;µ,Σ)
over an N -dimensional vector x ∈ RN (this includes matrices of size M×T , stacked
into a vector of length N =MT , tensors of higher order, etc). The widely known
numerically stable way of drawing such samples s ∼ N (x;µ,Σ) is

1. construct the Cholesky decomposition R of Σ (that is, an upper triangular
matrix such that R⊺R = Σ)

2. draw a vector u ∈ RN from the standard Gaussian distribution

p(u) = N∏
i

N (ui; 0,1)
3. set s = µ +R⊺u

The rest of this document focusses on step 2. Steps 1 and 3 can be used to map
the results shown here to any jointly Gaussian distribution.
Notice that N (u; 0,I) is a spherically symmetric distribution. So another way
to draw u would be to draw a radius r from a Gaussian, then choose u uniformly
at random on the surface of the (N − 1)-sphere. This also means that, if we plot
u in a graph, then there is this entire (N − 1)-dimensional manifold of entirely
equivalent points that we do not plot. It would be great if we could somehow
show this degeneracy in a plot, but it is hard to plot an N − 1 dimensional space.
Instead, we here use the one dimension afforded by time, to make an animation
looping through a 1-dimensional sub-space of that manifold, which at least gives
a vague feeling for the degeneracy. How should we choose the sub-space within
the manifold? The manifold is a Lie group. We will choose a 1-dimensional orbit
within that group – a great circle on the (N − 1) sphere – drawn uniformly at
random. Here is one out of several possible ways to do this:

• draw a u uniformly at random as above

• draw a second v ∼ N (0;IN). Orthogonalize v and u by Gram-Schmidt
projection:

t = v − (v⊺u)u (1)
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this gives a tangent t to the (N − 1)-sphere at u. That tangent is an
element of the Lie algebra, a generator of an orthodrome (a great circle,
an orbit) on the (N − 1)-dimensional sphere.2

• For each point `i, i = 1, . . . , F + 1 on a grid from 0 to 2π, (F is the total
number of frames on the resulting animation), map xi = Exp(u, `it), where
Exp is the exponential map (not the exponential function) from the tangent
bundle at x to the tangent orbit at ti = `it. The matlab code at the end of
this document provides a function that does all the above.

3 Making TikZ plots

The following programming pipeline turns the resulting data into tikz-plots that
can be used in the LaTeX beamer/pgf environment (using Adobe Reader)

1. loop from 1 to F , plotting xi = µ +R⊺E(u, `it)
2. for each plot, construct TikZ output, using the matlab2tikz package3

3. compile each TikZ output into a pdf file, to save compile time (otherwise
your TeX source compilation will become very slow). For this, I use a trick
described in4, but apparently the newest version of TikZ can do this out
of the box (try searching for “tikz externalize”)

4. use the animate package5 to construct animated loops. Your LATEX source
will contain lines like these here:

\begin{animateinline}[autoplay,loop]{10}
\inputTikZ{./figs/nameofyourfigure_frame_1}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_2}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_3}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_4}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_5}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_6}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_7}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_8}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_9}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_10}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_11}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_12}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_13}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_14}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_15}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_16}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_17}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_18}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_19}\newframe
\inputTikZ{./figs/nameofyourfigure_frame_20}

\end{animateinline}

2Neil Lawrence has pointed out to me that the orthogonalization is not strictly required
when drawing from a Gaussian process prior, because the two draws are orthogonal to each
other with probability one when assuming that they are only a finite-dimensional restriction of
a truly nonparametric (infinite-dimensional) draw from a white-noise process. I am keeping
the orthogonalization in the formulation above to ensure it is also applicable to finite-rank
Gaussian distributions.

3https://github.com/nschloe/matlab2tikz
4http://kogs-www.informatik.uni-hamburg.de/˜meine/tikz/process/
5http://www.ctan.org/tex-archive/macros/latex/contrib/animate/
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(the number 10 in curly brackets denotes the frame-rate. I have found that
10 looks relatively smooth). If you get out-of-LATEX-memory errors, try
reducing the dimensionality M of your Gaussian (see code below).

A Matlab code
for generation of the raw samples

function X = GPanimation(d,n)
% returns a matrix X of size [d,n], representing a grand circle on the
% unit d-sphere in n steps, starting at a random location. Given a kernel
% matrix K, this can be turned into a tour through the sample space, simply by
% calling chol(K)’ * X;
%
% Philipp Hennig, September 2012

x = randn(d,1); % starting sample
r = sqrt(sum(x.ˆ2));
x = x ./ r; % project onto sphere
t = randn(d,1); % sample tangent direction
t = t - (t’*x) * x; % orthogonalise by Gram-Schmidt.
t = t ./ sqrt(sum(t.ˆ2)); % standardise
s = linspace(0,2*pi,n+1); s = s(1:end-1); % space to span
t = bsxfun(@times,s,t); % span linspace in direction of t
X = r.* exp_map(x,t); % project onto sphere, re-scale
end

function M = exp_map (mu, E)
% Computes exponential map on a sphere
%
% many thanks to Soren Hauberg!
D = size(E,1);
theta = sqrt(sum((E.ˆ2)));
M = mu * cos(theta) + E .* repmat(sin(theta)./theta, D, 1);
if (any (abs (theta) <= 1e-7))

for a = find (abs (theta) <= 1e-7)
M (:, a) = mu;

end % for
end % if
% M (:,abs (theta) <= 1e-7) = mu;
end % function

B Matlab code
for turning raw samples into animation

The code I use to generate the animations looks like this. Your actual imple-
mentation will have to vary in some obvious places to accommodate your local
setup.

function MakeGaussPlot(k,filename,phi)
% the standard gauss plot, using the nonlinear dataset
% Philipp Hennig, 11 Dec 2012

dgr = [0,0.4717,0.4604]; % color [0,125,122]
dre = [0.4906,0,0]; % color [130,0,0]

lightdgr = [1,1,1] - 0.5 * ([1,1,1] - dgr);
lightdre = [1,1,1] - 0.5 * ([1,1,1] - dre);

dgr2white = bsxfun(@minus,[1,1,1],bsxfun(@times,(linspace(0,0.6,2024)’).ˆ0.5,[1,1,1]-dgr));
dre2white = bsxfun(@minus,[1,1,1],bsxfun(@times,(linspace(0,0.6,2024)’).ˆ0.5,[1,1,1]-dre));

addpath ˜/Documents/MATLAB/matlab2tikz-0.1.2/

M = 150; % # dimensions

5



F = 20; % # frames
x = linspace(-8,8,M)’;
s1 = GPanimation(M,F);
s2 = GPanimation(M,F);
s3 = GPanimation(M,F);

dummytext = @(filename)([’\documentclass[10pt,usepdftitle=false]{beamer}’,...
’\pgfrealjobname{dummy} \input{preamble.tex}\begin{document} \begin{frame}’,...
’\inputTikZ{’,filename,’} \end{frame}\end{document}’]);

GaussDensity = @(y,m,v)(bsxfun(@rdivide,exp(-0.5*...
bsxfun(@rdivide,bsxfun(@minus,y,m’).ˆ2,v’))./sqrt(2*pi),sqrt(v’)));

%% prior
kxx = k(x,x); % kernel function (enter your favorite here)

m = zeros(M,1);
V = kxx;
L = chol(V + 1.0e-8 * eye(M)); % jitter for numerical stability

y = linspace(-15,20,250)’;
P = GaussDensity(y,m,diag(V+eps)); colormap(dgr2white);

for f = 1:F
clf; hold on

imagesc(x,y,P);
plot(x,max(min(m,20),-15),’-’,’Color’,dgr,’LineWidth’,0.7);
plot(x,max(min(m + 2 * sqrt(diag(V)),20),-15),’-’,’Color’,lightdgr,’LineWidth’,.5);
plot(x,max(min(m - 2 * sqrt(diag(V)),20),-15),’-’,’Color’,lightdgr,’LineWidth’,.5);

if nargin > 2
plot(x,phi(x),’-’,’Color’,0.7*ones(3,1));

end

plot(x,m + L’ * s1(:,f),’--’,’Color’,dre);
plot(x,m + L’ * s2(:,f),’--’,’Color’,dre);
plot(x,m + L’ * s3(:,f),’--’,’Color’,dre);
xlim([-8,8]);
ylim([-15,20]);

drawnow; pause(0.1)
if nargin > 1 && ˜isempty(filename)

fname = [filename, ’priorfuncs’,num2str(f)];
matlab2tikz([fname,’.tikz’],’width’,’0.8\textwidth’,’height’,’0.4\textwidth’)
file = fopen(’dummy.tex’,’w’);
fwrite(file,dummytext(fname));
fclose(file);

command = [’/usr/local/texlive/2011/bin/x86_64-darwin/pdflatex -jobname="’,...
fname,’-external" ˜/Documents/dummy.tex’];

system(command);
end

end
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